Numerical simulation of the propagation of ship-induced Riemann waves of depression into the Venice Lagoon
نویسندگان
چکیده
Large in situ measured ship-induced depression waves (Bernoulli wakes) in the Malamocco–Marghera industrial channel of the Venice Lagoon are interpreted as long-living strongly nonlinear Riemann (simple) waves of depression. The properties of these depressions are numerically replicated using nonlinear shallow water theory and the CLAWPACK software. The further behaviour of measured depressions is analysed by means of replicating the vessel-induced disturbances with the propagation of initially smooth free waves. It is demonstrated that vessel-driven depressions of substantial height (> 0.3 m) often propagate for more than 1 km from the navigation channel into areas of the lagoon of approximately 2 m water depth. As a depression wave propagates into the lagoon, its front slope becomes gradually less steep, but the rear slope preserves an extremely steep bore-like appearance and the amplitude becomes almost independent of the initial properties of the disturbance. Analysis suggests that even modest ships in terms of their size, sailing speed, and blocking coefficient may generate deep depressions that travel as compact and steep entities resembling asymmetric solitary waves over substantial distances into shallow water adjacent to navigation channels. Their impact may substantially increase the environmental impact of ship wakes in this and similar water bodies.
منابع مشابه
Two dimensional modelling of flood flows and suspended sedimenttransport: the case of the Brenta River, Veneto (Italy)
The paper presents a numerical model for the simulation of flood waves and suspended sediment transport in a lowland river basin of North Eastern Italy. The two dimensional depth integrated momentum and continuity equations are modified to take into account the bottom irregularities that strongly affect the hydrodynamics in partially dry areas, as for example, in the first stages of an inundati...
متن کاملNumerical Calculations of Ship Induced Waves
Nowadays, various numerical methods are developed to extend computational fluid dynamics in engineering applications. One of the most useful methods in free surface modeling is Boundary Element Method (BEM). BEM is used to model inviscid fluid flow such as flow around ships. BEM solutions employ surface mesh at all of the boundaries. In order to model the linear free surface, BEM can be modifie...
متن کاملGPU-SPH simulation of Tsunami-like wave interaction with a seawall associated with underwater
Investigation of the waves generated by underwater disturbances gives precious insight into the effect of man-made underwater explosions as well as natural phenomena, such as underwater volcanoes or oceanic meteor impact. On the other hand, prediction of the effects of such waves on the coastal installations and structures is required for preparation worthwhile criteria for coastal engineers to...
متن کاملEvaluation of Moonpool Effects on Hydrodynamic Resistance of a Supply Vessel, Using Experimental and Numerical Methods
Moonpool is an opening in the floor or base of a hull ship which can be used to lower tools and vehicles into the sea in a protected area. In this paper, the effect of a rectangular cross section moonpool on the resistance force of a supply vessel was investigated both by experimental and numerical methods. For both methods a 1:37.2 scale of Caspian3 surface vessel was used. Experiments were ca...
متن کاملPiezoceramic Element Design and Fabrication for Ultrasonic Transducer of Gas Meter
Ultrasonic transducers play a significant role in generating and receiving the acoustic waves in ultrasonic flowmeters. Depending on the required accuracy, the ultrasonic transducers can be installed either in one pair or more in an ultrasonic flowmeter. The main part of an ultrasonic transducer is its piezoceramic element. In this work, four piezoceramic elements with different diameter to thi...
متن کامل